
 

MULTIWAVELENGTH PYROMETRY 

 

The basic idea of multiwavelength pyrometry consists in the supposition that 

in a certain wavelength interval [λja … λjb], such that for the natural numbers jb and 

ja: jb − ja = K − 1 (i.e., K measured points of the spectrum get within this 

wavelength interval); a function with a limited (L − 1) set of variable coefficients 

(al), where l = 0…L − 2 can be used to approximate the emissivity. Then, provided 

that K > L, one can formulate the optimization problem of minimizing the residual 

between the calculated thermal emission spectrum Isam,,ij in the wavelength interval 

[λja … λjb], and its approximation in the space of L optimization variables 

(a0…aL−2, aL−1), where additional (L − 1)’th optimization variable is the true 

temperature aL−1 = Ttrue. For example, a polynomial approximation of the 

emissivity viz εsam,j = ∑ alλ
l
j

L−2
l=0  can be used. The residual (rj) between the 

experiment and calculation at wavelength λj ∈ [λja … λjb] can be introduced as 

follows: 

rj  = yj − Mj(λj, a0…aL−2, aL−1)       (A0) 

where Mj = (Ibb(λj, aL−1) − Isur,j) ∙ ∑ alλ
l
j

L−2
l=0 , and yj – measured spectral 

intensity.  

It is also convenient to introduce a new index k that runs from 1 to K, so that λk=1:K =

[λja … λjb], index l of the optimization variables runs from 0 to L − 1. We can 

rewrite the quadratic residual minimization problem in a vector form:  

argmin(f(𝐱)) , where f(𝐱) = ‖𝐫‖2 =
1

2
𝐫T𝐫 =

1

2
∑ rk

2K
k=1 ,               (A1)  

where 𝐱 is a vector-column of the optimization variables 𝐱T = (a0…aL−2, aL−1) =

(𝐚T, Ttrue), the superscript T denotes transposition, and 𝐫 = 𝐲 −  𝐌(𝐱) is the 

expression (8) written in a vector form, 𝐚 is a column-vector of polynomial 

coefficients approximating emissivity. Further in this section we will assume that 

vectors (designated as bolded symbols) mean vector columns, K is the number of 



spectral points, and  L is the number of the optimization variables. The necessary 

conditions that a vector 𝐱∗ is the local minimizer of the problem (A1)  are ∇f(𝐱∗) =

𝟎, ∇2f(𝐱∗) ≥ 0 (i.e., the Hessian matrix (∇2f) is positive semi-definite). The 

sufficient conditions are as follows ∇2f(𝐱∗) > 0, i.e., the Hessian matrix (∇2f) is 

positive definite. The gradient of the scalar function, a vector of size [L × 1], when 

differentiated by the optimization variables is defined by the expression: 

∇f(𝐱) = ΓT𝐫,          (A2) 

where Γ = [𝐉𝟎, … , 𝐉l, … 𝐉L−1] = [
∂𝐫

∂x0
, … ,

∂𝐫

∂xl
, …

∂𝐫

∂xL−1
] is a matrix of size 

[K ×  L] of first derivatives, 𝐉l =
∂𝐫

∂xl
= [

∂r1

∂xl
, … ,

∂rk

∂xl
, …

∂rK

∂xl
]T is a column vectors of 

size  [K × 1], thus the Jacobian matrix element is [Γ]kl =
∂rk

∂xl
. According to (A1): 

Γ = −ΓM, where ΓM is the matrix of first derivatives of the approximating function 

vector 𝐌(x): 

ΓM = [
∂𝐌

∂x0
, … ,

∂𝐌

∂xl
, …

∂𝐌

∂xL−1
].        (A3) 

In expression (A3) 
∂𝐌

∂xl
= [

∂M(𝐱,λja)

∂xl
, … ,

∂M(𝐱,λj)

∂xl
, …

∂M(𝐱,λjb)

∂xl
]T.  

For second-order optimization methods, it is preferable to have an analytical 

expression for the Hessian matrix  H = ∇2f(x). This is a matrix of size [L × L], 

whose element of p-th row and q-th column is described by the expression: 

[H](p=0:L−1)(q=0:L−1) =
∂2f(𝐱)

∂xp ∂xq
. 

The Hessian matrix of the least squares problem has the form: 

H = ΓM
TΓM − ∑ HMk

K
k=1 = Ha − ∑ HMk

K
k=1 = H𝐚 − HM.   (A4) 

The matrix element HMk in expression (A4) represents matrices, whose elements are 

given by the expressions: [HMk]pq = rk
∂2M(𝐱,λk)

∂xp ∂xq
. The optimization is an iterative 

process of successive approximations of the local minimum. The vector of variables 

on (t + 1)-th iteration is expressed through the one on the previous iteration: 

𝐱(t+1) = 𝐱(t) + 𝐩(t). According to Newton's method, the vector of an iteration step  



𝐩(t) is the solution of the system of equations: ∇2f(𝐱(t))𝐩(t) = −∇f(𝐱(t)), that, 

considering introduced notations (A2) and (A4), gives a system of linear equations  

(Ha − HM)𝐩(t) = ΓM
T𝐫.         (A5) 

The Hessian and Jacobian matrices in expression (A5) are calculated for the t’th step 

optimization variables vector (𝐱(t)). If we neglect second derivatives in the 

expression for the Hessian matrix (i.e. if we leave only first-order derivatives cross-

products matrix Ha), we obtain the Gauss-Newton method [Nocedal J., Wright S.J. 

Numerical optimization: Springer, 2006. 645 p. https://doi.org/10.1007/978-0-387-

40065-5 ]. The calculation of Ha is also required when using the Levenberg-

Marquart method. In general case the polynomial approximation can be introduced 

as V𝐚, where 𝐚 is the vector of coefficients and V is the Vandermonde matrix of 

polynomial basis functions values (some combination of independent variable 

exponents). For standard polynomial basis this matrix has the following form:  

V =

(

  
 

λ1
0 …      λ1

l   … λ1
L−2

⋮
λk
0

⋮

⋮

λk
l

⋮

⋮

λk
L−2

⋮

λK
0 …      λK

l   … λK
L−2)

  
 

.      (A6)    

A superscript in (A6) denotes the power exponent. It should be mentioned that the 

subsequent analysis is based on the matrix form of polynomial approximation and it 

does not require specifying the Vandermonde matrix explicitly, thus the resulting 

formulas can be applied to another set of polynomial basis functions (e.g. Chebyshev 

polynomials) by replacing the V-matrix or, more generally, any linear model of 

emissivity approximation.  We also introduce the operation of diagonalization of a 

vector: let 𝛂 = (α1…αk… αK)
T be a vector of size [K × 1], then its representation 

as a diagonal matrix of size [K × K] will be denoted as 𝛂D, where 𝛂 vector elements 

stand on the main diagonal and all other elements are equal to zero. Then, taking 

into account (A5, A6), the vectorized expression for the approximating function of 

size [K × 1] in expression (8) can be put as follows: 

𝐌(𝐱) = 𝐈с
D(xL−1)V𝐚,          (A7) 
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In (A7)   𝐈с
D is a diagonal matrix of the Planck function values column-vector 

(corrected for the incident radiation flux). In expression (A7), the matrix V does not 

depend on the optimization parameters, so it does not change from iteration to 

iteration, that helps to reduce the computational resources of the optimization 

algorithm by filling V only at the start of the optimization process. Furthermore, the 

elements of the matrix 𝐈с
D(xL−1) depend on only one of the optimization parameters 

(xL−1 = Ttrue ), that simplifies the calculation of derivatives. Given expression (A3), 

it is convenient to represent the Jacobian matrix in a block form: 

ΓM = [ΓM1, 𝚪M2],         (A8) 

where ΓM1 is a matrix of size [K × (L − 1)], the first derivatives of the target 

function by the parameters of emissivity approximation, and 𝚪M2 is a vector of size 

[K × 1], of the first derivatives with respect to temperature. Taking into account 

(A7), we have: 

ΓM1 = 𝐈с
DV,          (A9a) 

𝚪M2 =
d𝐈c
D

dT
V𝐚 = 𝐈c

′DV𝐚.        (A9b) 

In expression (A9b), 𝐈c
′D is the diagonalised vector of the Planck function derivatives 

with respect to temperature. Next, the component of the Hessian matrix, including 

only first-order derivatives (Ha) from (A8, A9) has the form:  

Ha = ΓM
TΓM = [

ΓM1
T

𝚪M2
T] [ΓM1, 𝚪M2] = (

ΓM1
TΓM1 ΓM1

T𝚪M2
𝚪M2

TΓM1 𝚪M2
T𝚪M2

) = (
A 𝐛
𝐛T ha

) (A10)  

Thus, the matrix Ha is a block-matrix consisting of a square positive definite matrix 

A (see expression A11b), a vector column b, and scalar ha, where, according to (A9 

a, b):  

𝐛 = VT𝐈c
D𝐈c
′DV𝐚,          (A11a) 

A = VT(𝐈c
D)2V,          (A11b) 

ha = 𝐚
TV𝐓(𝐈c

′D)2V𝐚.          (A11c) 

Now we need to obtain an exact expression for the Hessian matrix, which includes 

the second derivatives, HM = ∑ HMk
K
k=1  from eq. (A4). Most elements of the matrix 

HMk are equal to zero since they are the second derivatives of the coefficients of the 



emissivity approximation. This matrix is symmetric and can be represented in a 

similar to (A10) block form: 

 HMk = (
O 𝐇Mk

𝐇Mk
T hMk

)         (A12) 

In expression (A12), O is an all-zeros matrix of size [(L − 1) × (L − 1)], while 𝐇Mk 

is a column vector of size [(L − 1) × 1]:  

𝐇Mk = [rk
dIсk

dT
λk
0
, … , rk

dIсk

dT
λk
l, … , rk

dIсk

dT
λk
L−2]T =  [VT]krk

dIсk

dT
 .  (A13) 

In (A13), [VT]kdenotes the k-th row of the Vandermonde matrix V. In (A12), hMk 

is a scalar equal to: 

 hMk =
d2Iсk

dT2
rk ∑ λk

lL−2
l=0 xl.        (A14) 

Now the whole HM matrix is: 

HM = ∑ HMk
K
k=1 = (

O ∑ 𝐇Mk
K
k=1

∑ 𝐇Mk
TK

k=1 ∑ hMk
K
k=1

) = (
O 𝐇M
𝐇M

T hM
)  (A15) 

In accordance with (A13) and (A14), the following notations are introduced in 

(A15): 

𝐇M = ∑ 𝐇Mk
K
k=1 = ∑ [VT]krk

dIсk

dT

K
k=1 = VT𝐈c

′D𝐫     (A16)  

hM = ∑ hMk
K
k=1 = ∑

d2Iсk

dT2
rk ∑ tk

lL−2
l=0 xl

K
k=1 = 𝐫T𝐈c

′′DV𝐚    (A17)  

In expression (A17), 𝐈c
′′D is a diagonal matrix of size [K × K] of the Planck function 

second derivatives. Finally, the whole Hessian matrix (including both first and 

second derivatives) takes the following form: 

H = Ha − HM = (
A 𝐛 − 𝐇M

𝐛T −𝐇M
T ha − hM

) =  (
A 𝛃

𝛃T h
).    (A18) 

In expression (A18), taking into account (A11a-c), the following notations are 

introduced: 

𝛃 = 𝐛 − 𝐇M = V
T𝐈c
D𝐈c
′DV𝐚 − VT𝐈c

′D𝐫 = VT𝐈c
′D(𝐈c

DV𝐚 − 𝐫)   (A19а) 

h = ha − hM = 𝐚
TV𝐓(𝐈c

′D)2V𝐚 − 𝐫T𝐈c
′′DV𝐚 = [𝐚TV𝐓(𝐈c

′D)2 − 𝐫T𝐈c
′′D]V𝐚 (A19b) 

In (A18), the matrix A is defined by expression (A11b). The resulting matrix 

formulas (A11a-c, A18, A19) are computationally efficient. At each iteration of the 

optimization algorithm, only four vectors are to be updated: 𝐚, 𝐈𝑐, 𝐈′𝑐 and  𝐈′′𝑐, and 



the Hessian and Jacobian matrices are introduced by a series of matrix 

multiplications. In the numerical implementation of the algorithm, it is convenient 

to use simple analytical formulas for the derivatives of the Planck function with 

respect to temperature:  

dIbb

dT
= ξIbb,  

d2Ibb

dT2
=

dξ

dT
Ibb + ξ

2Ibb = (2ξ
2 − ξ(

2λT+C2

λT2
)) Ibb,  

where Ibb(λ, T) =
1

λ5
C1

expexp (
C2
λT
) −1

, ξ =
C2

λT2

exp (
C2
λT
)

expexp (
C2
λT
) −1

, 

wavelength in µm, temperature in Kelvin, C1=1.191043Е8, W ∙ µm4/(m2 ∙ Str); 

C2 =14387.752, µm ∙ K. 


